(2.29)  Ply, 21 -a} =1- (E2) exp(:a} .

If F is a truncated exponential

- e X
1 e—uI x<I,
l -e
(2.30) F(x) =
1 xZII

then

(2.31) P{y, > I-a} = 1-[e™"-e "1 -7 expluari-e #I)"1y,

If F has an exponential distribution with mean 1/u, then

(2.32) P{Y; > I -a}e= e W (I-a) .

In this last case the distribution function of Yn can be

Fl computed by induction quite easily and

(2.33) P{Y 3 I-a}s= s
Hence when F is exponential
i . :
. _ a-nul
. (2.34) E[Yn] - [1 -e b =

In principle similar results can be obtained for other distri-

butions, but we have found no simple expressions.
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2.5. Inventory Costs and Policies

There are at least three monetary quantities which affect
the profitability of an inventory policy over a fixed ipterval of
time (0,t]: the selling price, p; the storage cost, a; and
the cost of lost demands, b. If the storage cost a is
charged just on the basis of I (something like warehouse size)

then the total expected profit in (0,t] is
Z2(1) = p(I - E[I.]) - aI - bs (t)
5 3=
= (p-al - p(E t) [1 - expl-(At/ec)I]]
- At At
b{y + an("= 1) + E; (5 D)}
for the case of uniformly distributed demands; see ((2.16) and

(2.20)). One can numerically find the maximum expected profit

for this case; nothing explicit seems to be available.




3. THE MANY-BUFFER STORAGE PROBLEM

In this section we will study a model for the situation
of example (c) in section 1. Messages are successively admitted
to the nth buffer until there is a message length that exceeds the
remaining capacity of the buffer. The total amount of this message
is put in the (n+l)st buffer and the nth buffer is left forever.
Successive messages are then put in the (n+l)st buffer until there
is a message whose length exceeds the remaining capacity of the
(n+1) st buffer; this message is put in the (n+2)nd buffer and
so on.

Let I denote the common capacity of the buffers and

D, denote the length of message i. Assume {Di} is a sequence

i
oy independent identically distributed random variables with
distribution F having a density function £ such that

£(x) >a>0 for x € [0,I]. Let R(x) =J7_  F™ (x) be
the renewal function associated with F. If F(I) < 1, then
we will assume that an incoming message to the currently used
nth buffer of length greater than I is sent to the (n+l)st
buffer; when it cannot fit into the (n+l)st buffer, then it is
"banished," i.e. sent to some other set of buffers. The next
message however will try to enter the (n+l)st buffer. If this
message has length greater than I it is banished and the
following message will try to enter the (n+l)st buffer; all
messages of length exceeding I will be banished until one
appears that is smaller than I and it will be the first
entry in buffer (n+l).

15




This model has been studied for demand distributions F

with F(I) = 1 by Coffman et al. (1978). Their approach was

et et L

to study the Markov process describing the total amount of
inventory or space consumed in successive buffers or bins.
Here we study the process {Ln}’ where Ln is the size of the
demand that first exceeds the remaining capacity of the nth

buffer; {Ln; n=1,2,...} is a Markov process. Let

K(x,[0,y]) = P{L _,, < yILn = x}.

Note that
P{Ll <yl = K(0, [0,y1)
is the same as the sum of the forward and backward recurrence

: times at time I for a temporal renewal process with inter-

renewal distribution F. Thus for y < I

X
(3.1) Hy(y) = P{L; <y} = [ R(dz) [F(y) - F(1-2)].
I-y
l Note that for y < I
. r I-x
/ R(dz) [F(y)-F(I-x-2)]
I-x-y
if x < I-y;
I-x
(3.2) K(x,[0,y]) = + [ R(dz) [F(y)-F(I-x~2)]
0
& g if: T~y £ =< X
|
. ‘ I
N | [ R(dz) [F(y)-F(I-2)]

if 2 > X

| .
3
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Hence

[R(I-x) - R(I-x-y)] F(dy) if x < I-y,
R(I-x) F(dy) if 1 > x > I-y,
(3.3) Ki(x,dy) = y
R(y) F(dy) - [ R(dz) f(y-z) + R(dy)F(y)
X if x = I-y ,
[R(I) - R(I-y)] F(dy) I %>F .

Note that for some 0 < a < b < I, there exists a 6 > 0 such

that for all x
2
K% (x,dy) > ¢ for y € [a,b]

where Kz(x,dy) = f; K(x,d2) K(z,dy). Hence hypothesis D'

on page 197 of Doob (1952) is satisfied. Thus, if

K" (x,A) = P{L ¢ AlL, = x}

1+n

for all Borel subsets A, then

(3.4) 1im K™ (x,A) = H(A)

n+ o
exists and further the convergence is geometric
n
IK™ (x;A) - H(A)| < ay

for some positive constants o and y, Yy <1 for all A.

Now let

17




H (x) = P{Ln € lo.x]lL0 = 0}.

Then a renewal argument can be used to show that for x < I

I
(3.5) H (%) = {_xun*k(dy) [F(x) - F(I-y)]
I
+ [1-H ()] [ R(dy) [F(x) - F(I-y)] .
I-x

Taking limits as n + = it is seen that the distribution
H(x) satisfies the following equation for x < I:
I

[ H*R(dy) [F(x) - F(I-y)]
I-x

"

(3.6) H(x)

I
+ [1-H(I)] { R(dy) [F(x) - F(I-y)].
-X

Equations (3.1) and (3.6) can be simplified for certain

specific distributions F.

A. Exponential Demands.

For the exponential distribution with mean 1 and

x < I the equations are

(3.7) Hy(x) = 1 - e X - xe ¥
and
-x -
(3.8) H(x) = xe ~ H(I) + H (x) - e [ H(I-x+u)du .
0

18
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B. Uniform Demands

For the uniform distribution on [0,c] with ¢ A

they simplify to

(3.9) H (x) = expls (I-0)] - (1 - %) exp(Z 1)
and

2 1 e 1
(3.10) H(x) = Z explz (I-x)] é exp(- < u) H(u)du

I
+ X -LepEn -5 £ exp(- £ u) H(u du

for x { I. Similar expressions hold for x > I, but they are
unimportant in the present context.

Equations (3.6), (3.8) and (3.10) do not seem to yield
explicit answers. As a result we have solved (3.8) and (3.10)

numerically by iteration using the system of equations

X
(3.11) H_,(x) = xe X H (I) + Hj(x) - e ¥ é H (I-x+u)du
with Hl as in (3.7) and

1 1 I-x
(3.12) H_ ,(x) = < exp[Z (I-X)] g exp(- S u) H (u)du

b 1
X 1 1 X 1
* SRS - 2 exp(z I) (1 - 2) é exp(- < u) H_ (udu

* 5l = Hn(I)] Hl(x)

with Hl as in (3.9). For the cases carried out the convergence
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is rapid: after n = 5 iterations very little change is noted
and convergence has occurred, for most practical purposes.
Next let Yn be the amount of storage space used in

the nth bin; the distribution of Yn is denoted by Gn(x), and

G(x) = 1lim P{y < x} = 1lim G, (x) <

L » o n > o

is the long-run distribution. By probabilistic arguments

and (3.4)

X 2 X -
(3.13) G(x) = [ H*R(dy) F(I-y) + [1-H(I)] ({ R(dy) F(I-y)
0

where F(I-y) = 1 - F(I-y) and the long run average expected

capacity of a bin that is actually used is

I
A=[ x G(dx)
0

For the case in which F 1is exponential with unit mean

I
(3.14) AT = (<8I} [1e"2) =« & g e* H(x)dx .

For the case in which F is uniform on [0,c] with ¢ > I

(3.15) A = =2 é H(wd + exp(z I) g exp(- T u) H(uwdu

1
+ H(I) [21 —cexp(: 1) +c] + [-I+cexp(z I) - cl.
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Numerical solutions were obtained for equations (3.14) and
(3.15) by first computing the probabilities Hn(x), n = 1,2}...,10
iteratively from (3.7) and (3.11) for the exponential demand
case, and from (3.9) and (3.12) for the case of uniform demands.
Our technique was simply to discretize x: xj = jh, h = I/N,

N being the number of Q-values at which H_(x) is evaluated
(values of N from 200-1200 were utilized in order to obtain
two~-significant digit accuracy). The integrals were then
approximated by a summation, i.e. Simpson's rule. Having the
values of Hn(xj) it is possible to calculate those of

Hn+1(xj)' and from these the values of Gn(x) and the mean
usage, E[Yn], may be calculated by numerical integration. In
the case of exponential demand very simple upper and lower
bounds were obtainable; such bounds were not tight enough to

be useful for the uniform case.

The following table summarizes the numerical results.

We have compared demand distributions that result, as nearly
as possible, in the same probability that an initial demand
on an empty bin will be rejected. We have tabulated the

| , expected level to which the bin is filled. It is interesting
that the limited bin occupancy is 0.75 when a uniform demand
over the range of the bin size is experienced. This result has
been obtained analytically by Coffman et al. (1978); in that

paper simple and elegant analytical expressions for G and H

also appear for this case. The considerable similarity of

I N vy - o

the numbers in the rows of the table is notable; apparently the
long-run bin occupancy is only slichtly larger than is that

21




of the first bin, and the occupancy experienced for uniform
demand is only slightly larger than for exponential. Further
investigations to examine the reasons for this insensitivity

would seem to be of interest.

Expected Fraction of Bin Filled

(fn = E[Yn] i I)

Rejection Probability Exponential Demand Uniform Demand
3
J F(I) fl 0 f1 £
0.00 - - 0.76 0. 75
; 0.05 0.74 0.75 0.74 0.74
' 0.10 0.69 0.70 0.72 0.72
0.15 0.65 0.66 0.68 0.69
0.20 0.60 0.62 0.64 0.66
0.25 0.56 0.58 0.60 0.62
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